

DTO-BioFlow

Integration of biodiversity monitoring data into the Digital Twin Ocean

DTO-BioFlow data training workshop:

Good practices for data capture in spreadsheets

- Most frequently used tool for data collection
- \cong Often used for data storage
- Starting point for the transformation to DwC-A

Data structure often optimised for human readibility rather than machine readability

- Example 2 Data is organised in many different ways
- \equiv Bad variable names
- Values are not consistent
- Contradicting information caused by redundancy
- Spreadsheet software messed up the data
- Spreadsheet contains calculated values and plots

- Data structure often optimised for human readibility rather than machine readability
- Data is organised in many different ways
- Bad variable names
- \cong Values are not consistent
- Contradicting information caused by redundancy
- Spreadsheet software messed up the data
- Spreadsheet contains calculated values and plots
- \cong \rightarrow Researchers / data managers spend a lot of time data wrangling

Im

spent

Data structure often optimised for human readibility rather than machine readability

- Example 2 Data is organised in many different ways
- Bad variable names
- Values are not consistent
- Contradicting information caused by redundancy
- Spreadsheet software messed up the data
- Spreadsheet contains calculated values and plots
- \cong \rightarrow Researchers / data managers spend a lot of time data wrangling

Avoid pretty spreadsheets

\cong Avoid:

- Using blank rows or columns to visually separate things
- sing merged/overarching cells
- Solution and a straight st
- ≡ Using colour to convey meaning
- ■Using blank cells to indicate repetition of a value
- ■Adding multiple tables on the same sheet
- \Rightarrow Structure should always be a simple rectangle

	А	В	С	D	E	F	G	Н
1		Loca	tion 1	Loca	tion 2			
2	Date	Species	Count	Species	Count		Location 1	Oostende Bank
3								51.29785,2.788396
4	02/08/2023	Species A	1	Species A	7			Sandbank
5		Species B	50	Species B	0		Location 2	Middelkerke Bank
6		Species C	0	Species C	2			51.28682,2.722723
7								Sandbank
8	03/08/2023	Species A	2	Species A	5			
9		Species B	4	Species B	1			
10		Species C	3	Species C	4			
11								

Data structure often optimised for human readibility rather than machine readability

Example 2 Data is organised in many different ways

- Bad variable names
- \cong Values are not consistent
- Contradicting information caused by redundancy
- \cong Spreadsheet software messed up the data
- Spreadsheet contains calculated values and plots
- \approx \rightarrow Researchers / data managers spend a lot of time data wrangling

Cerastoderma edule

Viable? 48 yes

48 yes 36 yes 24 yes 48 yes 36 yes 24 no 48 no 36 no 24 no

Viable?

48 yes 36 yes 24 no 48 yes 36 yes 24 yes 48 no 36 no

Control after incubated 48 hours 1 Molar 2 Molar

Viable?

48 yes 36 no 24 no

36 no

24 no 48 no 36 no 24 no

Control after incubated 48 hours

Cerastoderma edule 72 h-old D-larva 2020-06-25

failed

1 Molar 2 Molar

Control after incubated 48 hours

Cerastoderma glaucum 48 h-old D-larva 2020-06-24

1 Molar 2 Molar

not done

48 h-old D-larva 2020-06-24

Species

Date

19 Mean 20 CT48 21 1M 22 2M

1

33 CT48 34 CT48 35 CT48 35 CT48 36 1M 37 1M 38 1M 39 2M 40 2M 41 2M 44 CT48 44 CT48 45 1M 46 2M 47

26 Species 27 Development stage 28 Date

1 Propylene glycol 2 Replicates

51 Species 52 Development stage 53 Date

 55
 Propriane glycol

 56
 Propriane glycol

 57
 Replicates

 58
 Cf48

 50
 Cf48

 50
 Cf48

 50
 Cf48

 50
 Cf48

 50
 Cf48

 51
 IM

 52
 IM

 63
 IM

 64
 2M

 65
 2M

 66
 James of the second sec

					A	В	С	D	E	F	G	Н	1	J	K	L
				1	00/00/000	Locations	Species	Count	T .							
				2	28/03/2024	Site 1	Species A	5	lota	al counts Sp	ecies A	11				
diversity monitoring tal Twin Ocean				<u>з</u> 4			Species D	7		op Sr		23				
) Y		- 5		Site 2	Species A	0				20				
				6			Species B	4								
				7			Species C	5				Tota	l coun	ts		
				8	29/03/2024	Site 1	Species A	4	25							
E F	G	H I	J K	9			Species B	3	20							
				10)		Species C	8	20							
				11	1	Site 2	Species A	2								
Glycerol Replicates Duration	Viable?	Dimethyl su Replicates	Ulfoxide Duration Viable?	12	2		Species B	1	15 —							
CT48 CT48 CT48	48 yes 36 yes 24 yes	CT48 CT48 CT48														
1M 1M 1M	48 yes 36 no 24 no	1M 1M 1M	нарру јат	nilles are al	і анке;	every	' unna	рру	10							
2M 2M	48 yes 36 yes	2M 2M 2M	family is u	nhannv in i	ts own	wav										
2M	24 no	2M	juilling is ui	шарру ш і	15 0 0011	way.			5		_					
							Leo To	lstov 🛛								
								· · · ·	0							
										Specie	es A		Species B		Species (2
			Like familie	os tidv dat	ncets n	ire all	alike	hut								
Glycerol Replicates Duration	Viable?	Dimethy Replicates		<i>,</i>			unite									
CT48 CT48 CT48	48 yes 36 yes 24 no	CT48 CT48 CT48	every mess	sv dataset i	is mess	sy in it	ts own									
1M 1M	48 yes 36 no	1M 1M	/	/		/										
2M 2M 2M	24 no 48 yes 36 no	2M 2M	way.													
2M not done		2M			F	alhch		ham								
					I	lauic	y vvicr									
							A	В	C	D	E		F	G	н	l .
						1		Loc	ation 1	Loc	ation 2					
						2	Date	Species	Count	Species	Count	t		Location 1	Oostende	Bank
Glycerol		Dimethyl su	ulfoxide			3									51.29785,2	.788396
CT48 CT48	Viable? 48 yes 36 yes	CT48 CT48	Duration Viable? 48 yes 36 no			4	2023-08-	02 Species	A	1 Species	Α	7			Sandbank	t
CT48 1M	24 no 48 yes	CT48 1M	24 no 48 yes			5		Species	B 5	0 Species	В	0		Location 2	Middelker	rke Bank
1M 2M	24 no 48 yes	1M 2M	24 no 48 yes			6		Species	С	0 Species	С	2			51.28682,2	.722723
2M 2M	36 no 24 no	2M 2M	36 yes 24 no			7									Sandbank	2
						8	2023-08-	03 Species	Α	2 Species	Α	5				
						9		Species	В	4 Species	В	1				
						10)	Species	С	3 Species	С	4				

DTO-BioFlow data training workshop: Good practices for data capture in spreadsheets

11

Standard way to structure data

Three basic principles:

 \equiv each variable is a column

 \cong each observation is a row

 \equiv each value is a cell

Image from "R for Data Science (2e)".

DTO-BioFlow data training workshop: Good practices for data capture in spreadsheets

\cong Advantages

- \equiv Increase interoperability
- ≡ Flexible
- \cong Easy to analyse and visualise
- \cong Add meaning to the structure
- \cong Excellent tools (e.g. Tidyverse in R) \rightarrow easier transformation
- \cong Most DwC tables are tidy

Data structure often optimised for human readibility rather than machine readability

Example 2 Data is organised in many different ways

Bad variable names

- Values are not consistent
- Contradicting information caused by redundancy
- \cong Spreadsheet software messed up the data
- Spreadsheet contains calculated values and plots
- \approx \rightarrow Researchers / data managers spend a lot of time data wrangling

Clear variables

\cong Good names

- \cong No spaces or special characters
- \cong Descriptive
- \cong Concise

Clear variables

\cong Good names

EXERCISE TO A CONTRACT SEPARATE FILE / Sheet to document additional info

	А	В	C	D	E	F	G					
1	Start Date	Additive	Conce	Volume	Biological material	Mass of ma	terial					
2	2022-01-01	NaCl	50	1	brown seaweed	100						
3	2022-01-01	NaCl	75	1	brown seaweed	200		1	_	-		_
4	2022-01-01	NaCl	50	1	red seaweed	100		A	В	C	D	E
5	2022-01-01	Cl	50	2	brown seaweed	100	1	Parameter	ParameterType	Description	VocabularyID	Unit
6	2022-01-01	Cl	75	2	brown seaweed	200	2	Start date	column header	When the material was added to the water+preservative	NA	NA
7	2022-01-01	Cl	50	2	red seaweed	100	3	Preservative	column	Type of preservative used	NA	NA
R							4	Concentration	column	Concentration of the preservative	http://vocab.nerc.a	percent
							5	Volume	column	Total liquid volume	NA	litre
							6	Biological material	column	Name of biological material	NA	NA
							7	Mass of material	column	Mass of biological material	NA	gram
							8	brown seaweed	cell value	Fucus distichus Linnaeus, 1767	https://www.marin	NA
							9	red seaweed	cell value	Furcellaria lumbricalis (Hudson) J.V.Lamouroux, 1813	https://www.marin	NA
							10	NaCl	cell value	sodium chloride	http://vocab.nerc.a	NA
							11	Cl	cell value	chlorine	http://vocab.nerc.a	NA

Data dictionary

(example from "FAIR data for marine biologists' OceanTraining course)

DTO-BioFlow data training workshop: Good practices for data capture in spreadsheets

Clear variables

- \cong Good names
- ≡ Units
 - ≡In separate column
 - \equiv In variable name
 - \equiv In data dictionary
- ⇐ Consistent names across files

Data structure often optimised for human readibility rather than machine readability

- E Data is organised in many different ways
- Bad variable names
- Walues are not consistent
- Contradicting information caused by redundancy
- \cong Spreadsheet software messed up the data
- Spreadsheet contains also calculated values and plots
- \approx \rightarrow Researchers / data managers spend a lot of time data wrangling

Consistent values

All values in a single column should be in the same format/ written in the same way/ abbreviated in the same way

- E.g. "juvenile", "J", "juv.", "juv"
- ≡ E.g. "2 Oct-23", "2023-10-02", "2/10/2023"
- \cong \rightarrow Pick one format and stick to it
- Do not mix data types

 \cong E.g. writing "between 5 and 10" in a column with numerical values

Consistent values

- \cong Missing values
 - \equiv Different recommendations

 - Chose 1, stick to it, and document it in your data dictionary/readme file
 - $\equiv 0 != missing value$

Welcome to Null Island, where lost data goes to die

Where the prime meridian meets the equator, a non-existent island captures our imagination — and our nor

The dark side of zeros in your dataset: the hidden threat to statistical analysis

Å

edit: Google Earth / Roland Kolan

KEY TAKEAWAYS

● The equator and the prime meridian meet at a place denoted as 0°N, 0°E. ● This location, in the Gulf of Guinea, is where non-geocoded data goes to die. ● Recently renamed "Null Island," it has also captured the imagination — and acquired a map and several flags.

It is always good practice to explore the data before you fit a model. A clear understanding of the dataset helps you to select the appropriate statistical approach and, in the case of linear models, to identify the corresponding design and treatment structure by defining

DTO-BioFlow data training workshop: Good practices for data capture in spreadsheets

Data structure often optimised for human readibility rather than machine readability

- Data is organised in many different ways
- Wariable names are not clear
- Bad variable names
- Contradicting information caused by redundancy
- Spreadsheet software messed up the data
- Spreadsheet contains also calculated values and plots
- \approx \rightarrow Researchers / data managers spend a lot of time data wrangling

Normalisation

- Normalised → Each type of observational unit is a table
- To normalise or not? → Depends on the purpose
- Sormalised data preferred for data storage
 - \equiv Avoids reduncancy
 - Efficient data storage
 - Reduces chances of errors
 - \cong Common column needed to link
 - Preferably an ID (which does not hold information in itself)

Employees' Skills

Employee ID	Employee Address	Skill			
426	87 Sycamore Grove	Typing			
426	87 Sycamore Grove	Shorthand			
519 <	94 Chestnut Street	Public Speaking			
519 <	96 Walnut Avenue	Carpentry			

Example of an update anomaly in an unnormalized table

- Data structure often optimised for human readibility rather than machine readability
- E Data is organised in many different ways
- Bad variable names
- \cong Values are not consistent
- Contradicting information caused by redundancy
- **EXAMPLE Software messed up the data**
- Spreadsheet contains also calculated values and plots
- \approx \rightarrow Researchers / data managers spend a lot of time data wrangling

Spreadsheet software common issues

- \cong Beware of:
 - Auto-formatting
 - \equiv Auto-fill
 - Mumber separators
 - Encoding issues
 - 🚎 Maximum size
 - \equiv Loss of zeros
 - \equiv Overwriting

Excel spreadsheet error blamed for UK's 16,000 missing coronavirus cases

By James Vincent, a senior reporter who has covered AI, robotics, and eight years at The Verge. Oct 0, 2020, 3:41 PM GMT+2

/ The case went missing after the spreadsheet hit its filesize limit

O Comments (0 New

The UK failed to add nearly 16,000 confirmed cases of coronavirus to its national track and trace system due to an Excel error. A number of reports, including from *The Guardian*, *Sky News*, and *The Dally Mall*, say the mistake was caused when an Excel spreadsheet used to track confirmed cases of the virus reached its maximum file size and failed to update.

DTO-BioFlow data training workshop: Good practices for data capture in spreadsheets

- Data structure often optimised for human readibility rather than machine readability
- E Data is organised in many different ways
- Bad variable names
- Values are not consistent
- Contradicting information caused by redundancy
- \cong Spreadsheet software messed up the data
- **Spreadsheet contains calculated values and plots**
- \approx \rightarrow Researchers / data managers spend a lot of time data wrangling

Safeguarding the data file

- Always use a copy of the data file for analysis/ visualisation/ transformation
- \cong Write-protect
- Back-up
- Save in a plain-text format

- Data structure often optimised for human readibility rather than machine readability
- E Data is organised in many different ways
- Bad variable names
- Values are not consistent
- Contradicting information caused by redundancy
- \cong Spreadsheet software messed up the data
- Spreadsheet contains calculated values and plots
- \approx \rightarrow Researchers / data managers spend a lot of time data wrangling

A good spreadsheet

- Data is organised in a tidy structure
- Good variable names, clear meanings, units documented
- Values are consistent
- So redundancy (or no contrasting information)
- \cong Basic quality inspection done
- \cong Spreadsheet contains only the raw data and is saved as CSV/TSV
- \cong \rightarrow Easy transformation to standard format
- \approx \rightarrow Researchers spend a lot of time data wrangling doing science

A good spreadsheet

EXAMPLE 2 Ideally, these good practices are applied from the start (data entry)

 \equiv Alternatively, we will need to transform 'messy' data

- \cong Always work on a copy
- maxsim mathrmatical Keep track of the transformation steps
 - ≡ E.g. README file

Preferably, use a tool that automatically tracks the transformation steps and allows the tranformation to be easily repeated (e.g. script, OpenRefine)

- Wickham, H. . (2014). Tidy Data. Journal of Statistical Software, 59(10), 1–23. <u>https://doi.org/10.18637/jss.v059.i10</u>
- Broman, K. W. and Woo, K. H. (2018) 'Data Organization in Spreadsheets', *The American Statistician*, 72(1), pp. 2–10. <u>https://doi.org/10.1080/00031305.2017.1375989</u>
- Python4DS: Tidy data: <u>https://aeturrell.github.io/python4DS/data-tidy.html</u>
- Data Cleaning with OpenRefine for Ecologists: <u>https://datacarpentry.org/OpenRefine-ecology-lesson/index.html</u>

DTO-BioFlow

Integration of biodiversity monitoring data into the Digital Twin Ocean

THANKS!